Cefic-LRI Microplastics Research

Katherine Santizo

LRI Programme Manager

MARII Summit – October 15 2025

Successfully launched in 2021 – Part of the ICCA global initiative (MARII)

Budget of 6M over 6 years to carry out relevant research

Project management:

15 project portfolio

To-date 12 publications and 3 open-source tools developed

Addressing multiple research gaps:

- Environment: Aquatic and terrestrial compartments
- Human Health
- Modelling tools for predictability

LRI – MARII Summit 2025 **24/10/2025**

• Objective: To develop a user-friendly, generic multimedia risk assessment model for evaluating the environmental fate and impact of microplastics.

LRI – MARII Summit 2025 **24/10/2025**

Objective: To develop a user-friendly, generic multimedia risk assessment model for evaluating the environmental fate and impact of microplastics.

Background: Addressing the scientific and regulatory challenge of microplastics, with a focus on creating a tool analogous to established chemical risk assessment models (e.g., EUSES, RAIDAR, Simplebox).

Objective: To develop a user-friendly, generic multimedia risk assessment model for evaluating the environmental fate and impact of microplastics.

Background: Addressing the scientific and regulatory challenge of microplastics, with a focus on creating a tool analogous to established chemical risk assessment models (e.g., EUSES, RAIDAR, Simplebox).

Scope: Support decision-making with a user-friendly model covering all types of microplastics, encouraging collaboration within the scientific community.

Framework Features:

- Integration of existing data for dynamic risk assessment updates.
- Modular design for future expansion and sensitivity analysis.
- Open-source availability for broad research and development participation.

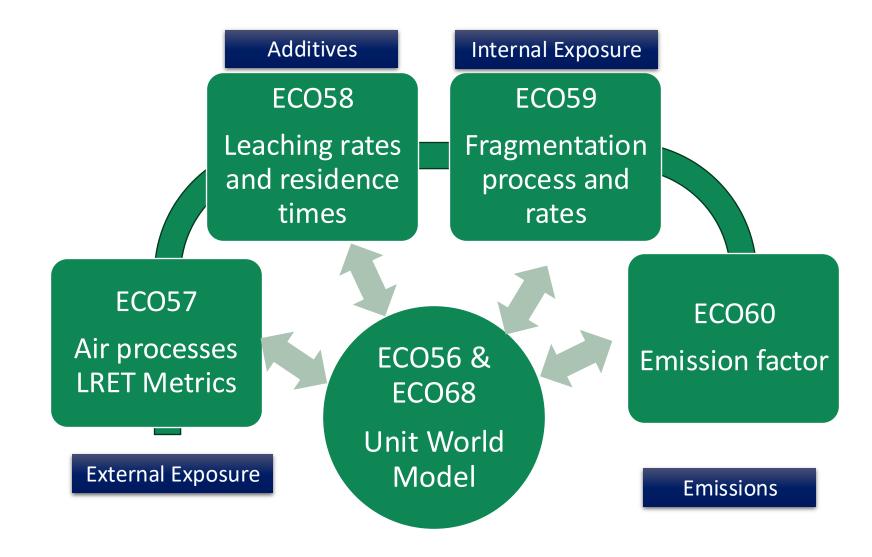
Objective: To develop a user-friendly, generic multimedia risk assessment model for evaluating the environmental fate and impact of microplastics.

Background: Addressing the scientific and regulatory challenge of microplastics, with a focus on creating a tool analogous to established chemical risk assessment models (e.g., EUSES, RAIDAR, Simplebox).

Scope: Support decision-making with a user-friendly model covering all types of microplastics, encouraging collaboration within the scientific community.

Framework Features:

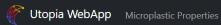
- Integration of existing data for dynamic risk assessment updates.
- Modular design for future expansion and sensitivity analysis.
- Open-source availability for broad research and development participation.


Holistic Assessment

Hazard

ECO 49 MP Effects Threshold

ECO 61 Terrestrial toxicity


UTOPIA

• https://github.com/mic roplasticscluster/UTOPIA model

UTOPIA WebApp

Run Model

About Visualizations

About the Application

This application provides interactive visualizations and analysis based on the underlying UTOPIA environmental model. The model simulates the fate and transport of microplastics in various environmental compartments. Key features: scenario setup, model runs, and detailed result exploration.

Application Screenshot

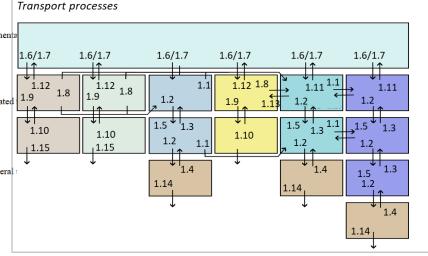
The Team

Researchers

The UTOPIA model was developed by leading environmenta

Researcher 1 Researcher 2

Developers


The web tool was designed and implemented by a dedicated

Developer 1 Developer 2

Infrastructure & Funders

This project is supported by a collaboration between severa

University 1 University 2

- 1.1 Advective transport
- 1.2 Settling
- 1.3 Rising
- 1.4 Sediment resuspension
- 1.5 Mixing
- 1.6 Dry deposition
- 1.7 Wet deposition/scavenging
- 1.8 Runoff transport
- 1.9 Percolation
- 1.10 Soil convection
- 1.11 Sea spray aerosol
- 1.12 Soil to air resuspension
- 1.13 Beaching
- 1.14 Burial in the sediments
- 1.15 Sequestration in deep soil

Human Health

Exposure

- B24 MODELING EXPOSURE AND BIODISTRIBUTION OF MICROPLASTIC PARTICLES IN THE HUMAN BODY
- B26 DERM DERMAL EXPOSURE, A REVIEW OF CURRENT KNOWLEDGE ON THE UPTAKE OF MICRO-AND NANO-PLASTICS

Inhalation Toxicity

 C10: A TIERED STRATEGY TO ASSESS MICROPLASTIC INHALATION Perspective Open access | Published: 14 July 2025
Exposure scenarios for human health risk assessment of nano- and microplastic particles

Taylor Lane ☑, Ira Wardani & Albert A. Koelmans

Microplastics and Nanoplastics 5, Article number: 28 (2025) Cite this article

1733 Accesses | 18 Altmetric | Metrics

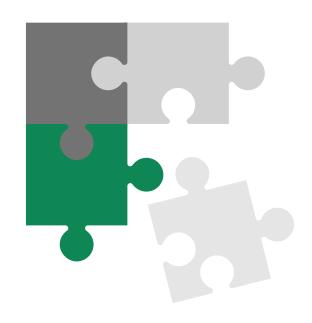
https://doi.org/10.1186/s43591-025-00134-9

Research Article Open Access © (S

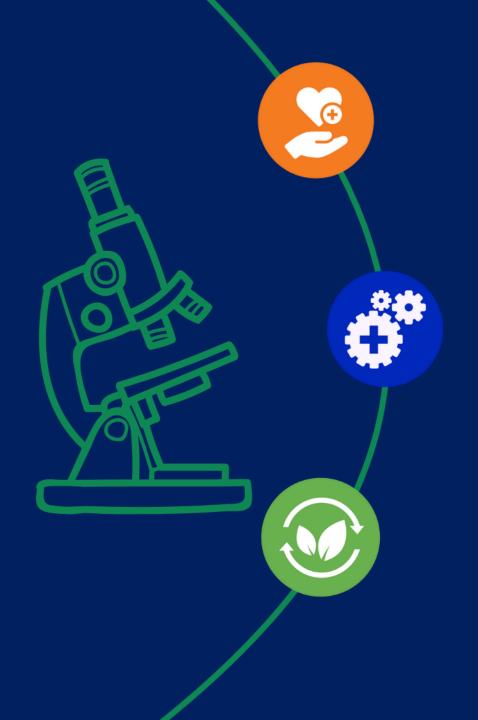
Microplastic Materials for Inhalation Studies: Preparation by Solvent Precipitation and Comprehensive Characterization

Katherine Y. Santizo, Hannah S. Mangold, Zeynab Mirzaei, Hyoungwon Park, Rajkumar Reddy Kolan, George Sarau, Susanne Kolle, Tanja Hansen, Silke Christiansen, Wendel Wohlleben

▼


First published: 13 January 2025 | https://doi.org/10.1002/smll.20240555

https://doi.org/10.1002/smll.202405555



Next Steps and Future Work

- Further work on Environmental Risk Assessment
- Continue efforts on Human Health
- Collaborate with ongoing and upcoming efforts (i.e., EU RTD, JRC, MOMENTUM, etc.)

LRI – PRESENTATION TITLE 24/10/2025

Thank you

LRI Secretariat

up Rolliard 40 1040 Brussols R

lri@cefic.be - www.cefic-lri.org

Cefic is registered in the EU Transparency Register under n° 64879142323-90