

SYSTEMATIC REVIEW OF POTENTIAL DEVELOPMENTAL AND REPRODUCTIVE TOXICITY OF MICROPLASTICS

ROBERT ELLIS-HUTCHINGS SENIOR TOXICOLOGIST - DOW

ACKNOWLEDGEMENTS

Seneca Fitch, John Rogers, Sue Marty, John Norman, Steffen Schneider, Erik Rushton, Daniele Wikoff

PROJECTS OVERVIEW

Sampling Methods

- Sediment & Soil deposition
- Indoor and Outdoor air

Analytical Methods

- Test Material characterization
- Biological tissues

Quality Control & Best Practices

 Human Health Toxicity studies

Reference Materials

- HPU Polymer Kit 1.0 & 2.0
- Expert workshop

Ecotoxicity & Fate

Threshold value determination

Additional

- Al assisted literature database
- Particle attributes: Lower size limit, Heteroaggregation

PLASTIC MICROPARTICLES STATE OF THE SCIENCE-HUMAN HEALTH

General consensus among scientific and regulatory agencies:

- Micro- and nanoplastics exposure has not been demonstrated to be a risk to human health.
- There are many limitations with the available data. More reliable data are needed.

2019 & 2022

"The weight of the scientific evidence provided by current data on adverse effects of NMP on human health is low, because of substantial limitations of the available information."

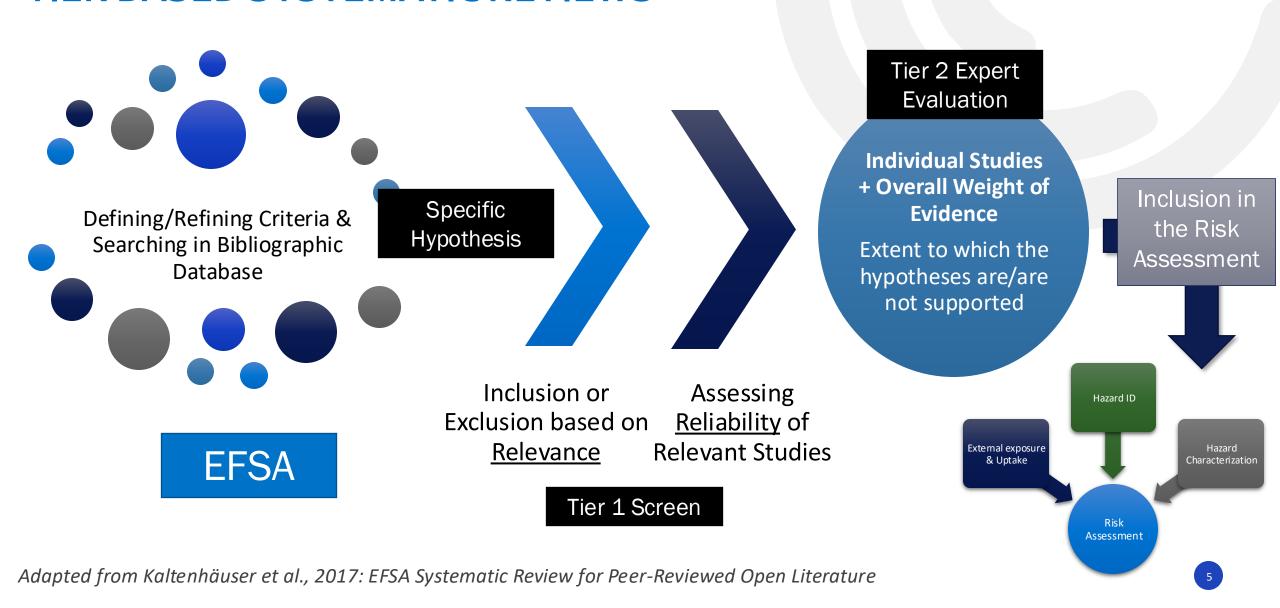
"Current scientific evidence does not demonstrate that levels of microplastics or nanoplastics detected in foods pose a risk to human health."

2025

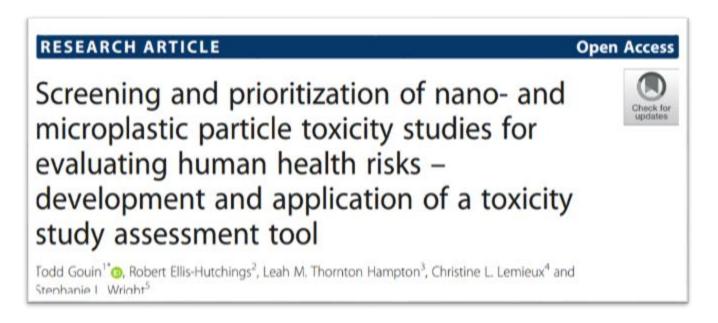
"There is no reliable toxicological evidence of health risks from the ingestion of microplastics in food."

ACCELERATION OF MICROPLASTICS HUMAN HEALTH HAZARD AND RISK CONCLUSIONS - ASSESSMENT TOOLS

- "Poorly documented studies or those with questionable study design and reproducibility should be ID'd as such and not be used" Key dements for Judging the Quality of a Risk Asses External Fenner-Crisp and Dellarco (20xposure & 24(8): 1127-1135. Retired US Uptakesk Assessors
- Vast majority of studies can add value, but lack of consistent/standard methods requires a systematic evaluation approach Risk for human health risks

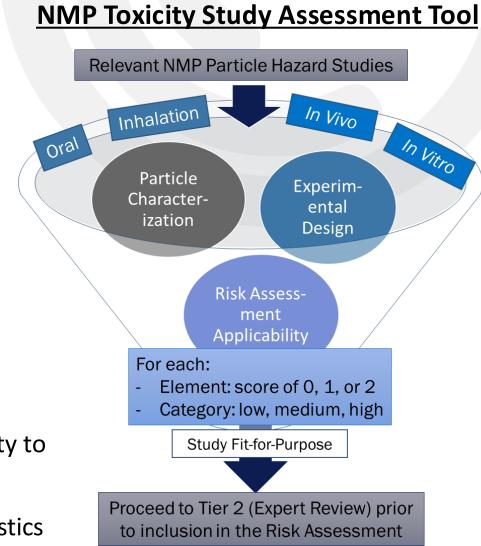

 Assessment

Human Health
Hazard
Assessment
Tools


Inclusion in the Risk Assessment

ASSESSMENT TOOLS FOR HUMAN HEALTH RISK EVALUATION –

TIER BASED SYSTEMATIC REVIEWS


NMP TOXICITY SCREENING ASSESSMENT TOOL – A TIER 1 APPROACH FOR HUMAN HEALTH HAZARD STUDIES

<u>Aims</u>

- Transparent, easily understood (qualitative & quantitative)
- Relevance & reliability
- Criteria: Particle Characteristics, Experimental design, Applicability to risk assessment

Combines elements of the Human health ToxRTool & the Microplastics Aquatic Biota screening criteria of de Ruitjer et al. (2020)

NEW APPROACH DEVELOPMENT – SYSTEMATIC REVIEW FOR MICRO/NANOPLASTICS (INCLUDING TIER 2)

Systematic review of potential developmental and reproductive toxicity of microplastics

Seneca Fitch 1, John Rogers, Sue Marty, John Norman, Steffen Schneider, Erik Rushton, Daniele Wikoff 1, Robert Ellis-Hutchings

¹ToxStrategies, Asheville, NC 28801, United States

²Dow, Midland, MI 48674, United States

³American Chemistry Council, Washington, DC 20002, United States

⁴BASF, Ludwigshafen am Rhein, 67056, Germany

⁵LyondellBasell Industries, Rotterdam, 3013AA, the Netherlands

Toxicological Sciences, 2025, 207(2), 289–305

https://doi.org/10.1093/toxsci/kfaf108

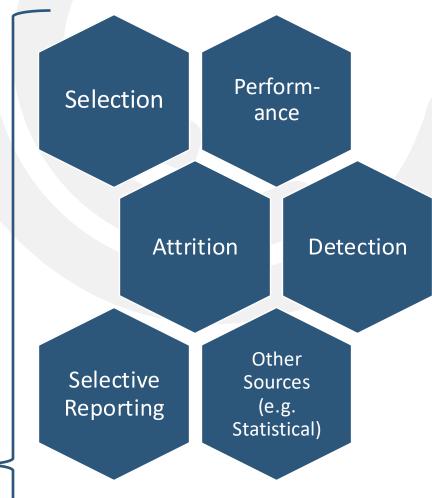
Key aspects

- New approach: Combines elements of NMP-TSAT and OHAT Risk of Bias
- Systematic Review Evidence-based methods used by authoritative bodies (E.g. EPA, NTP)
- Includes Tier 2 expert review with refinements of critical appraisal approaches
 - Internal validity and Construct validity of each relevant study
- Focuses on an area of disproportionate research: Developmental and Reproductive Toxicity studies

OHAT RISK OF BIAS (ROB) TOOL

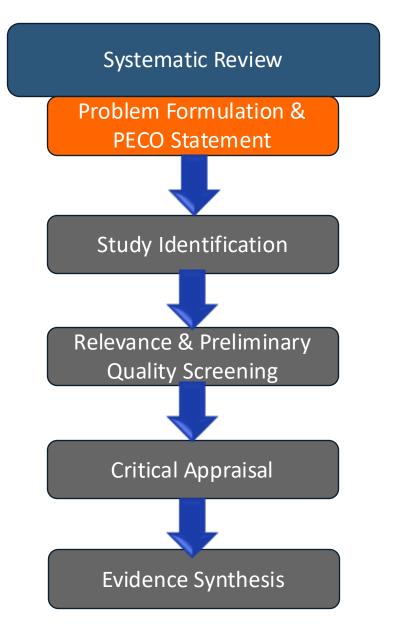
- OHAT RoB Tool developed by the US National Toxicology Program (NTP) within the National Institute of Environmental Health Sciences (NIEHS-NIH)
- Has the credibility of the link between exposure outcome been compromised by the study design and conduct?
- Bias is a systematic error, or deviation from the truth, in results or inferences
 - Can lead to under- or overestimation of true effect
- Risk-of-bias domains for observational studies
- Four risk-of-bias response options for each domain:

Probably Low Indirect evidence of


ndirect evidence of Indirect evidence of low RoB practices high RoB practices

Probably High

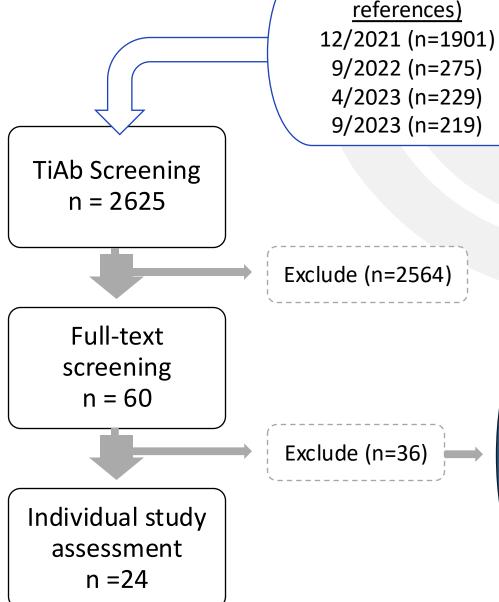
Definitely High


Direct evidence of high RoB practices

RoB assessed for: Individual studies & across studies

- 6 Domains (types of bias)
- 11 questions
 - NMP-TSAT + OHAT
 - Danopoulos et al. (2022)

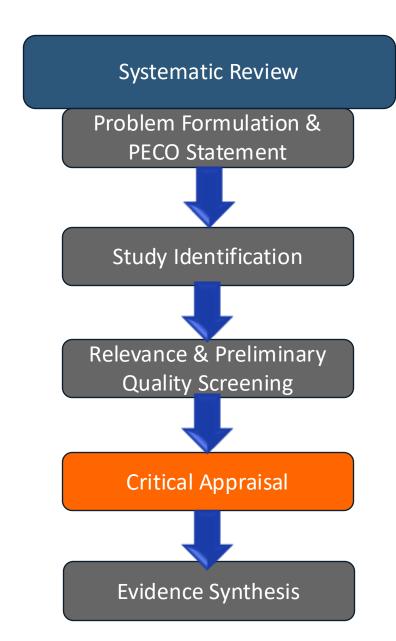
SYSTEMATIC REVIEW

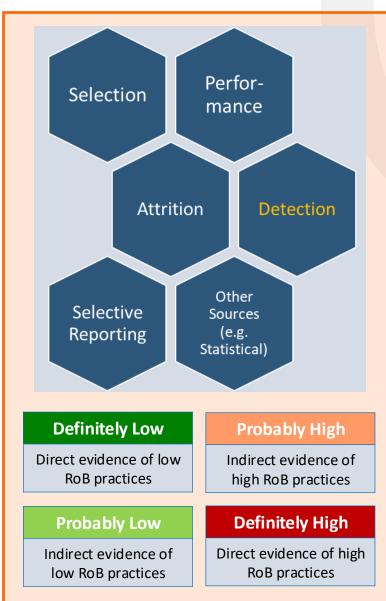

Problem Formulation

What is the hazard and dose-response relationship between exposure to MPs and reproductive and developmental adverse effects in mammals?

	PECO Element	Inclusion Criteria	Exclusion Criteria (selected)					
	P opulation	Human	Non-mammalian models					
		Animal	In vitro, ex vivo, in silico					
	E xposure	Exposures to microplastics (Definition: Plastic particles 0.1 µm to 5 mm)	Doses/concentrations not reported ^a					
		Oral, inhalation, or dermal routes of any exposure duration and frequency	Duration/frequency of exposure not reported ^a					
		≥ 2 treatment groups OR multiple particle characteristics (e.g. sizes) ^a	Particle size or Polymer type not reported ^a					
			Polymer type not reported ^a					
	C omparator	Include untreated or vehicle negative control	No appropriate comparator					
			Negative or concurrent control not reported					
	<u>O</u> utcome	Outcomes related to mammalian male and female DART endpoints	Outcomes unrelated to DART endpoints					

SYSTEMATIC REVIEW


Systematic Review Problem Formulation & PECO Statement Study Identification Relevance & Preliminary **Quality Screening** Critical Appraisal **Evidence Synthesis**



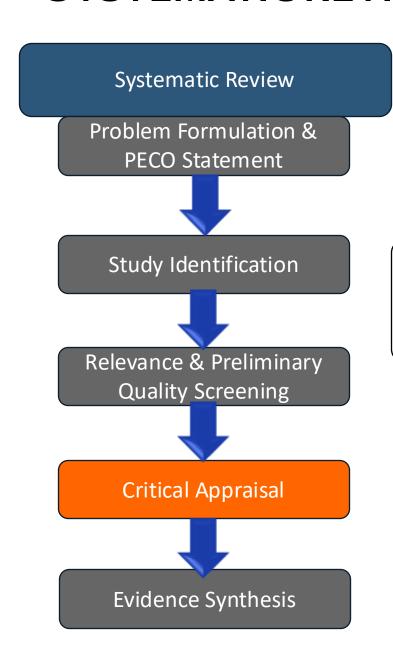
Search dates (# unique

Summary of exclusion
reasons at full-text
< 2 NMP groups (n=16)
Particle size (n=13)
Inadequate reporting (n=2)
Irrelevant route (n=2)
No DART outcomes (n=1)
Tier 1 quality criteria not
met (n=2)

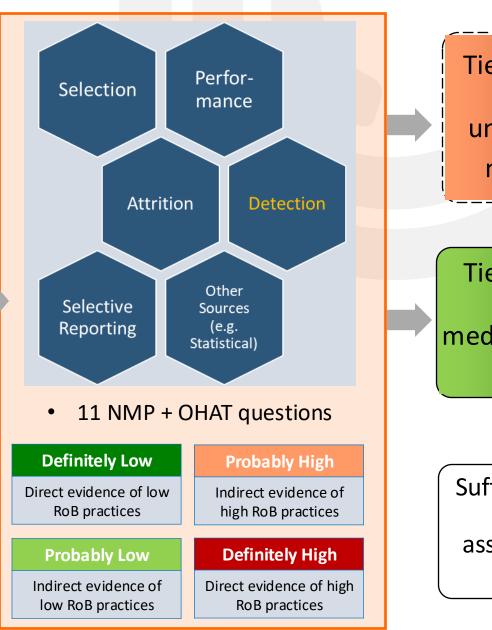
SYSTEMATIC REVIEW – CRITICAL APPRAISAL (24 STUDIES)

Key Domain - Detection

- 8a. Can we be confident in the **exposure** characterization? (**test agent/particle characterization**)
- 8b. Can we be confident in the **exposure** characterization? (**test agent administration**)
- 9. Can we be confident in the **outcome** assessment?


Other Domains (9 Questions)

Selection - Randomization, Blinding
Performance — Experimental conditions
(vehicle, feed, housing)
Attrition — Data exclusion
Selective Reporting


Other Sources – Statistical methods

Assessment Conclusion Categories
Internal Validity = Tier I, II, III
Construct Validity = High, Medium, Low,
Unacceptable

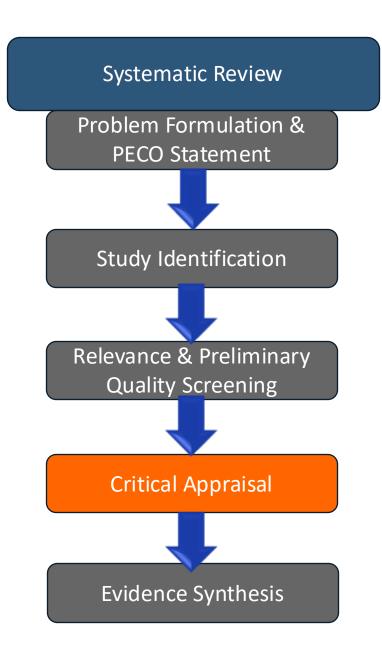
SYSTEMATIC REVIEW - CRITICAL APPRAISAL RESULTS

Individual study assessment n = 24

Tier III OR low, unaccep. n = 24

Tier 1 or II

AND


medium, high

n = 0

Sufficient for risk assessment

n = 0

SYSTEMATIC REVIEW – CRITICAL APPRAISAL RESULTS

	Internal Validity											
	K	ey Metr	ics									
	8a	8ъ	9	1	2	5a	5b	6	7	10	11	Overall Tier
An et al. (2021)			-	-	NR	-	-	NR		-	+	3
Han et al. (2021)	-	-		NR	NR	-	+	NR	+			3
Hou et al. (2021a)	-	-		+	NR	-	+	NR	+	-		3
Hou et al. (2021b)		1	1	1	NR	NR	-	NR		1	+	3
Jin et al. (2021a)	-	NR	1	+	NR	-	-	NR	+		1	3
Li et al. (2021)	-	-	-	1	NR	-	-	NR	NR	-	+	3
Luo et al. (2019a)	-	-	-	-	NR	-	+	NR	NR	-	-	3
Luo et al. (2019b)	-	-	-	+	NR	-	+	NR	NR	-	-	3
Park et al. (2020)	-	+	-	NR	NR	-	+	NR	+	-		3
Wei et al. (2021)	NR	-	-	+	NR	-	-	NR	NR	-	+	3
Xie et al. (2020)	NR	-	-	NR	NR		+	NR	+	-	+	3
Ilechukwu et al. (2022)	-	-	-	NR	NR		NR	NR	-		+	3
Jin et al. (2022)	-	-	+	-	NR	+	NR	-	+	-	+	3
Wen et al. (2022a)	-	-	-	+	NR	-	NR	NR	+	-	-	3
Aghaei et al. (2022)	-	-	-	+	NR	-	NR	NR	NR	-		3
Cui et al. (2023)	-	-	+	+	NR	-	-	+	1	-	+	3
Zhang et al. (2023)	-	-	1	+	NR	-	-	NR	1		1	3
Chen et al. (2022)	-	-	1	+	NR	+	-	NR	1		NR	3
Wen et al. (2023b)	-	-	-	+	NR	+	-	NR	+	-	+	3
Zhao et al. (2023)	-	-	-	+	NR	-	-	NR	-	+		3
Saeed et al. (2023)		-	-	-	NR		-	NR	+	+	+	3
Lu et al. (2023)	-	-	-	+	NR	-		NR	NR		NR	3
Wu et al. (2023)	-	-	-	+	NR	+	NR	NR	-	-	+	3
Ma et al. (2023)	-	-	-	+	NR	-	-	NR	+		+	3

Construct Validity
Characterization of the construct of a study relative to PECO
Medium
Unacceptable
Medium
Low
Medium
Medium
Medium
Medium
Low
Low Medium
Low
Medium
Medium
Medium
Medium
Low
Medium

SYSTEMATIC REVIEW - CONCLUSIONS

- No study advanced to the evaluation of sufficiency for risk assessment
 - Inconsistent exposure characterization, poor outcome assessment, lack of adherence to validated guidelines
- All studies considered unreliable in terms of understanding the true effect of an exposure.
 - Regulatory context: Klimisch 3 (Not Reliable) or 4 (Not Assignable)
 - Regulatory use: Often excluded or given minimal weight in decision-making
- Characterizing the reproductive and developmental toxicity of MPs based on this body of evidence is not advised

Not all systematic reviews are equivalent (E.g. Chartres et al., 2024)

Navigation Guide methodology differs from the OHAT RoB in 2 significant ways:

- 1) Does not include Exposure parameter in critical evaluation.
- 2) Assumes experimental animal data are of "high" quality equivalent to human randomized control trials.

FEATURES NEEDED TO INCREASE CONFIDENCE IN RELIABILITY AND REDUCED BIAS

- Utilize environmentally relevant test materials and document their justification.
- Fully characterize the test materials, including particle surface features and non-particle components.
- Analytical Dose Confirmation is needed: dose stability, suspension/homogeneity, and concentration in the test system covering the duration of the administration.
- Methods are sufficiently detailed so that study replication is possible.
- For reproductive endpoints (functional, hormonal, structural), a detailed assessment of the general health of the parental unit is available for comparison.
- Assessment methods for effects endpoints are valid, reliable, and sufficiently robust to be consistent with the principles of the relevant regulatory test guidelines.

OVERALL CONCLUSIONS

- Scientific and regulatory agency general consensus: Insufficient evidence to assess potential risks of plastic NMP to human health
- Assessment tools will help to accelerate derivation of human health risk conclusions for micro/nanoplastics
- Using systematic review principles, a fit-for-purpose tier 1 (screening) and tier 2 (expert review) approach was developed (incorporated NMP-TSAT and OHAT Risk of Bias tools)
- For developmental and reproductive toxicity studies, no study was sufficiently reliable to be sufficient for evaluation in a risk assessment
 - Inconsistent exposure characterization, poor outcome assessment, lack of adherence to validated guidelines
- Increased confidence in reliability and reduced bias is achievable by employing key features.

The content of this presentation is for information and discussion purposes only. This material is presented with the understanding that neither Dow nor the presenter are rendering legal, business or professional advice or opinion, and accordingly, Dow assumes no liability whatsoever in connection with use of the information presented herein. This presentation may not be reproduced without the express permission of the author.

Internal Validity													
		.1etr	rios	Supporting Metrics									
		8b	9	1	1 2 5a 5b 6 7 10								
			-	- NID	NR	181	12#3	NR	-	7.0	- 3		
		-		NR	NR	-	+	NR	+			1	
		-		+	NR	-	+	NR	+	-			
	-	-	-	-	NR	NR	-	NR	-	-	+		
	17.1	NR		+	NR			NR	+			3	
	(#X	100	-	-	NR	-	-	NR	NR	-	+	3	
<u>a)</u>	-	1 4.1	-	-	NR	-	+	NR	NR	-	-	3	
<i>(</i> b)	-	(4)	-	+	NR	-	+	NR	NR	-	-	3	
20)	•	+		NR	NR	-	+	NR	+	-		3	
1)	NR	270	-	+	NR	17	-	NR	NR	-5	+	3	
0)	NR	1(#)	0.00	NR	NR		+	NR	+	-/	+	3	
1. (2022)	-	-	-	NR	NR		NR	NR	-		+	3	
)	40	-	+	4	NR	+	NR	2	+	2	+	3	
2a)	•	•		+	NR		NR	NR	+	•		3	
22)	17.4	474	-	+	NR	-	NR	NR	NR	-		3	
	(-)	-	+	+	NR	-	: - :	+	-	- 1	+	3	
	340	147	-	+	NR	-	040	NR	-		-	3	
	-	12	12	+	NR	+	120	NR	-		NR		
	-	-	(0)	+	NR	+	-	NR	+	9)	+		
	-		-	+	NR	-	-	NR	-	+		,	
		-	-	-	NR	**	-	NR	+	+	, ,		
		-	1040	+	NR	3 2 3		NR	NR		,		
			-	+	NR	+	NR	NR	-				
				+	NR	-	-	ND					

THANKYOU

Robert Ellis-Hutchings: rellis-hutchings@dow.com