CosPaTox (Cosmetic Packaging Toxicology Consortium)

Safety Evaluation Guidance for the Use of Post-Consumer Plastic Recyclates (PCR) in Cosmetic and Detergent packaging

Dr. Taryn Kirsch, Procter & Gamble October 17th, 2025

The CosPaTox guideline – Intended audience

Who is the guideline intended for?

- Brand owners intending to use PE or PP recyclates in packaging
- Packaging manufacturers intending to include PE or PP recyclates in their products for cosmetics and home care products
- Recyclers intending to offer PE or PP recyclates for use in cosmetics and home care product packaging applications
- Analytical laboratories intending to analyze recycled PE or PP
- All other stakeholders interested in the safety assessment of recycled PE and PP for cosmetic product and home care packaging

CosPaTox guideline download link Safety assessment of recycled plastics in packaging materials for cosmetic products and home care products

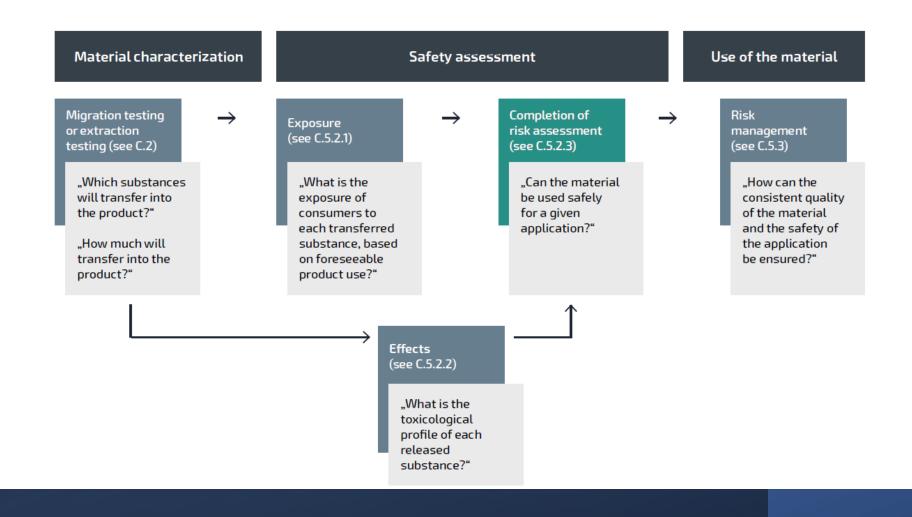
Guidance for recycled PE, PP and LDPE

What did CosPaTox deliver?

Voluntary industry guideline
enables the whole value chain of
recyclers, converters, and brand
owners to speak one language
when it comes to recycled
packaging safety.

allow for more recyclers to provide material at a high purity level, as the guideline outlines what to test, how to test and how to assess the results.

Guideline delivers novel test
method for analyzing PCR and
state-of-the-art toxicological risk
assessment principles for the
whole value chain > highly
defensible if challenged by
authorities


On-site qualification in a much shorter time using pellets is possible now

Defines basic quality
management guidelines for
recyclers – prerequisite to
increase PCR quota to PPWR (every lot is unique)

CosPaTox has shown that for rinse-off and detergent grade applications mechanically recycled PCR can be safely used.

Figure 1

Overview of the safety assessment and risk management process for recycled plastic materials.

-Analytical Testing-

Sample preparation

HDPE PP LDPE

Ring study – Experimental Design to Investigate Pellets

exp. design #
material + solvent / ratio
solvent
extraction
concentration
incubation
injection volume
iSTD

Variant "P1"
1g + 1ml
dichloromethane
./.
./.
3d / 40°C
1µl
Tridecan
ВНА
DEHP d4

Variant "P2"
1g + 1ml
ethanol 95%
./.
./.
3d / 60°C
1µl
Tridecan
ВНА
DEHP d4

Variant "P3"
1g + 1ml
ethanol 95
./.
./.
10d / 60°C
1µl
Tridecan
ВНА
DEHP d4

Variant "P4"
1g + 1ml
ethanol 50
./.
./.
3d / 60°C
1µl
Tridecan
вна
DEHP d4

Analytical Testing Results:

Pellets can be used for testing instead of having to blow-mold bottles saving time. Extraction testing on pellets of recycled plastic material yielded a strong overestimate of migration, while migration testing on pellets provided comparable results to testing on finished packaging articles.

A wide range of substances were detected, indicating the requirement for a nontargeted screening in addition to targeted analyses.

PCR plastic materials were found to potentially contain substances not directly related to the packaging material (for example originating from food, filling goods or nonpackaging products in the recycling input), suggesting a need for an better washing steps before using recycled plastics.

Table 2: Substance groups (excerpt) identified in extraction and migration testing of PE and PP recyclates, sorted by frequency of detection.

Substance group	Remarks	Likely major origin				
		PE/PP	Product	Foreign		
		packaging	residue	sources ⁴⁴		
Aliphatic compounds /		X				
Alkanes						
Fatty acids/esters		X	X			
Flavors/Aromas/ Fragrances			X			
Natural compounds			X			
Antioxidants	Antioxidants are used in plastics but also in filling goods (incl. some foods)	Х	Х	×		
Salicylates	Possibly degradation products of fragrance compounds		X			
Benzoates	Possibly degradation products of fragrance compounds		X			
Plasticizers (phthalate)				X		
Fatty acid derivatives (non- ester)			X			
UV filters	Likely from sunscreens or UV resistant packaging	X	X			
Plasticizers (non-phthalate)		X		X		
Agricultural chemicals			X			
Photoinitiators	May originate from UV curing printing inks; UV adhesives also a possibility	Х		Х		
<u>Naphthalenes</u>	Possibly degradation products of fragrance compounds		Х			

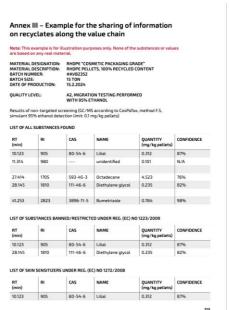
Anilines	Possibly degradation	X		X
	products of azo dyes			
Polyamide related	May originate from PA			X
substances	plastics in the input			
Polycyclic aromatic	May originate from	×		X
hydrocarbons (PAH)	(certain) black pigments			
	in plastics			
PET related and polyesters	Likely related to PET			X
	plastics in the input			
Chlorinated substances	May originate from		X	X
	chlorinated polymers in			
	the recycling input or			
	high temperature cross-			
	reaction with salt in the			
	input			
Flame retardants				X
Pharmaceuticals			X	
Styrene-related	Likely related to PS			X
	plastics in input			
Parabenes			X	
Acrylics		X		
Fluorinated substances				X
Food related substances			X	
Silicon compounds				
Bisphenol-A (BPA)				X
Plastic additives		X		
Cosmetic products related			X	
substances				
Nitriles	Potentially related to			X
	nitrile rubbers in input			
PEG/PPG related substances	-		X	
Disinfectants			X	
Nitro compounds				
Pigments		X		

What does CosPaTox provide further?

- CosPaTox has identified more than 180 unique substances through analytical testing- Most of these substances are of no concern to consumers when it comes to exposure to the product
 - SOI (substance of interest) List that contains all chemicals regularly found, as well as the ones regulated and under scrutiny. The list contains latest risk values as published by ECHA and also explains where the TTC concept needs to be applied.
 - Example calculation tool to quickly assess if a material can be qualified. Need to develop a more sophisticated version though!
 - Worst-case exposure calculation template is provided. Gives the whole industry a common understanding of what is needed to ensure safe packaging and hence a safe product.

SUBSTANCE				ORAL, SYSTEMIC					corresponding product concentration for default quality levels		
					ValueOralSvst		* 0.1. (5.1. *			0.04	
Chemical Gr	Molecule	CAS (combined)	Source *	Descript *	emic	Units	▼ Date of Entry ▼	QL1 (mg/m	QL 2 (mg/	QL 3 (mg/i	
Plasticizers (phthalate)	Dibutyl phthalate	84-74-2	ECHA	DNEL	7	μg/kg bw/d	January 2024	0,18	4,48	233,32	
Plasticizers (phthalate)	Tributylacetylcitrate	77-90-7	ECHA	DNEL	1,000	mg/kg bw/d	January 2024	26,07	639,84	33332,00	
Salicylates	Benzylsalicylate	118-58-1	ECHA	DNEL	790	ug/kg bw/d	January 2024	20.59	505.47	26332.28	

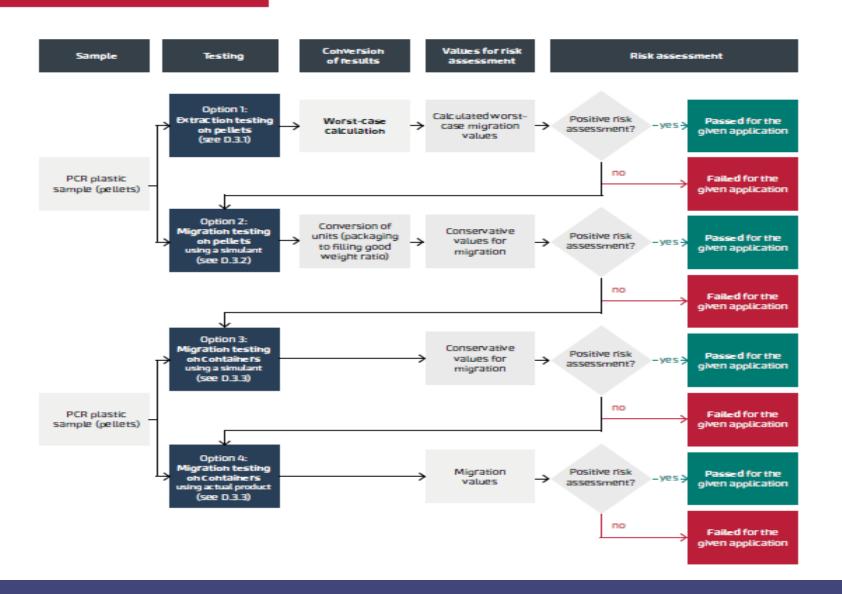
The CosPaTox guideline - Additional information and tools provided


1 Recommendations for analytical procedures for the assessment of PE and PP recyclates

2 Format proposal for the sharing of information on recyclates along the value chain

3 Curated list of toxicological information for a large number of substances of interest

Worst-case calculation tool in form of a spreadsheet


		C	D			G	H	1	1
								corresponding th according to the diffe	rent quali
_	SUBSTANCE	-	_	ORAL, SI	STEMIC	_	Guideline (ma)	exceed 1	
Į.		CAS(combined) =	Source W	Descript *	Value Ond Syste	units T		QL-A (mg/kg) = Q	
•	Tributylacetylcitrate	77-90-7						148,000	
	Tennisalissiste	118484	AHDB	ONEL ONEL	1.000	mg/kg bw/d	Jenuary 2024	116,920	6,
	heo/-saliciate	6259-76-3	AHCIS	ONEL	790	pg/kg hw/d	January 2024	114,920	1,
	Senzopherone	119414	FCHA	ONEL	50	ug/kg bw/d ug/kg bw/d	January 2024 January 2024	7,400	- 1,
	Diethyl phthalate	84.66-2	AHOS	ONE.	750	pg/kg bw/d	January 2024	111,000	4,
	Big/2-eth/hery/jadjoute	103-23-1	AHOR	ONE	1.700	methe brail!	January 2024	251,600	10.
	Phenanthrone	85-01-8	Company	MACE	0.0025	ug/kg hw/d	January 2024	0.37	10,
	aalmitamide	629-54-9	TTC	ClassII	1.5	ug/kg hw/d	January 2024	222	
	Heryl cinnamaldehyde	101-86-0	TTC	Cassil	9	µg/kg bw/d	January 2024	1.332	
	Limprene	5989-27-5	REDIA	ONE.	4.800	mg/kg bac/d	January 2024	710,400	29.
	borryl acetate	5655-61-8	ECHA	ONEL	75	µg/kg bw/d	January 2024	11,100	-
	2,2,2-trichloro-1-phenylethyl acetate	90-17-5	AHDS	ONE.	0.833	mg/kg bw/d	January 2024	123,284	5.
	Diphenylether	101-84-8	AHOS	NOEL	301.000	mg/kg bw/d	January 2024	44,548,000	1,866,
	2-Hydroxy-4-methosybenzophenone	131-57-7	AHCID	ONEL	2.000	mg/kg bw/d	January 2024	296,000	12,4
	Anthrocene	120-12-7	Company	MACE	0.300	mg/kg bw/8	January 2024	44,400	1,6
	Acenaphthene	83-32-9	TTC	Class III	1.5	µg/kg bw/d	January 2024	222	
	2-Hydroxy-4-octyloxybenzophenone	1843-05-6	AHDB	ONEL	940	ug/kg hw/d	January 2024	139,120	5,8
	Biliyi myristate	124-06-1	Campany	MACE	31.000	mg/kg bw/ill	January 2024	4,588,000	192,2
	Ruoranthene	206-44-0	TTC	6	0.0025	ug/kg bw/d	January 2024	0.37	
	Pyrene	129-00-0	AHCIR	NOAEL	75.000	mg/kg bw/d	January 2024	11,100,000	465,0
	Butylated hydroxytolume	128-37-0	AHCIS	ONEL	250	ug/kg bw/d	January 2024	37,000	1,5
	Soprepyl myristate Total antimory	110-27-0 7660-36-0	AHOS	ONEL	1.600	mg/kg bw/d	January 2024	236,800	9,
			AHCIS	ONEL	28.000	mg/kg bw/d	January 2024	4,144,000	173,6
	Total lead Total cadelium	7439-92-1	ECHA	ONEL		threshold derived)	January 2024		
	total cadmum toborrul Acetate	125-12-2	AHCIS	ONEL	1	µg/kg bw/d	January 2024	148	
	Blythesi salicyclate	11840-5	AHCID	ONEL	75 2.400	ug/kg bw/d	January 2024	11,100 355,200	14.0
	eucalyptol	470-42-4				mg/kg bw/d	January 2024		
	methyl dodecanoate	111-42-0	AHCIB	ONEL	600,000 No hazard ident	mg/kg bw/d	January 2024 January 2024	88,800,000	3,720,0
	methyl 2-naphthyl ether	23,04.0	ECHA	ONE.	625	uphs hwid	January 2024 January 2024	92,500	1.5
	3,3,5-Trimethyl-cycloheryl salicifate	118/16/9	AACIS	ONE.	860	ug/kg hw/d	January 2024	127,380	5.7
	p-t-Bucinal (Lilial)	80-54-6	AHOS	ONEL	92.5	ug/kg bw/d	January 2024	9,250	
	4-test-Butulahenol	25/56/4	ANCID	OND	26	ug/kg bw/d	January 2024	3,848	
	Dichloraberzidine	91-94-1	Company	MACE	0.000	mg/kg bus/d	January 2024	1.27	
	2-Sthylhend 4-	21245-02-3	ANTO	ONE	120	ughghwild	January 2024	25.160	1.0
sei	Chlorpyrifos	2921-88-2	AHCID	OND.	yeknewn (no		January 2024		
	Sisphenol A	80-05-7	ECHA	ONEL	53	ug/kg bw/d	January 2024	7,844	
	o-Anisidine	90-04-0	Company	MACE	0.000	marks bwild	January 2024	10.51	
	2-Naphthulenamine	91-59-8	Company	MACE	0.000	mg/kg bw/d	January 2024	0.84	
	Bt/vyl stearabe	111414	Company	MACE	31.000	mg/kg bw/d	January 2026	4,588,000	192,
	Camphor	76-22-2	ECHA	ONEL	5.000	mg/kg bw/d	January 2024	740,000	31,
	Isophorone	78-59-1	AHCO	ONEL	325	ug/kg hw/d	January 2024	48,100	2,
	Total beryum	7440-39-3	AHOS	ONEL	3.700	mg/kg bw/d	Jenuary 2024	547,600	22,
	Total sinc	7440-66-6	AHOS	ONEL	no hazard ident	Fied	January 2024		
	Total nickel	7440-02-0	ECHA	ONEL	11	µg/kg bw/d	January 2024	1,628	
	Total arsenic	7440-38-2	AHOS	ONEL	1.7	uglig bwild	January 2024	252	
	Total cobalt	7440-48-4	AHCIII	ONEL	8.9	pg/kg hw/d	January 2024	1,317	
	Total silver	7440-22-4	AHDB	ONEL	no hazard ident		January 2024		
	Acide berzoique	65-85-0	ECHA	ONEL	16.600	mg/kg bw/d	January 2024	2,456,800	102,
	1-Decanol	112-90-1	AHOS	ONEL	12.500	mg/kg bw/8	January 2024	1,850,000	77,
	Bt/vylene brassylate	105-95-3	ECHA	ONEL	No hazard ident		January 2024		
	a-pinene	80-56-8	AHDB	ONEL	225	ug/kg hw/d	Jenuary 2024	33,300	1,
661	Methanone, Ingacure 184 Methanone	947-19-3 51710-45-3	ECHA	ONEL	0.694	mg/kg bw/ill	January 2024	102,712	4,
	secoraction	3111843-2	TTC		0.0025	ug/kg bw/d	January 2024	0.37	

Profess Calculate to Cascelli, Falacia and Prolating

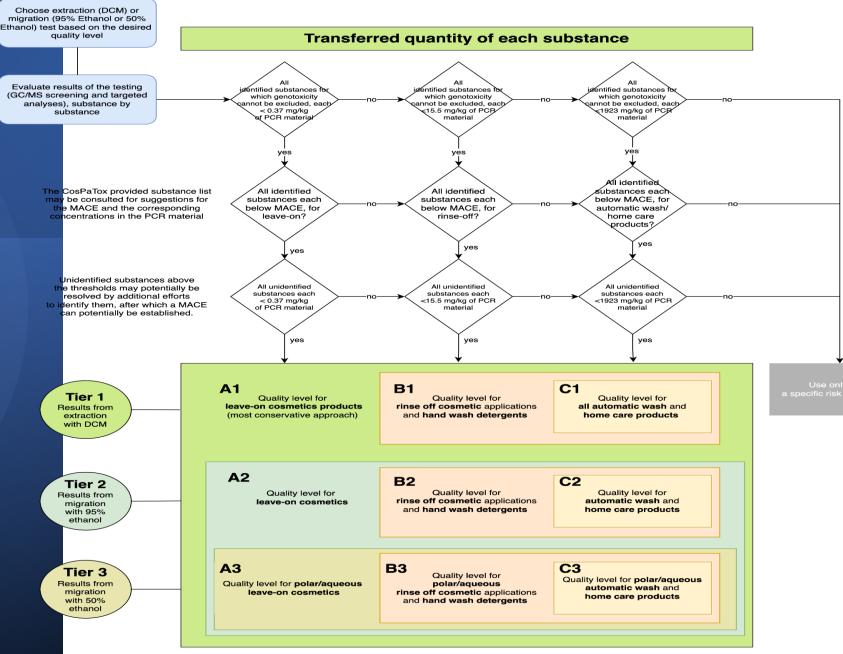

Associated to Casc

Figure 3

Flow chart for the evaluation of the transfer of substances from packaging containing recycled plastic material.

Worst case exposure assumptions: body lotion, shampoo, household cleaner

Note: These quality levels provide an indication for the most common types of products. Products which cannot be expected to be correctly represented by the testing, such as very alkaline products, should be considered specifically, and not on the basis of a quality level.

Note: 'Potentially genotoxic substances' are those substances which could be identified but for which the absence of genotoxicity

Leave-on Applications are Most Difficult to Qualify

There are many chemicals that were found through analytical testing (GCMS) via Dichloromethane and Ethanol 95% that we are unable to identify due to limitation of method and standards.

Hence, for exposure-based risk assessment we need to conservatively assume that these are potentially genotoxic (AMES test results show that this can be the case

Threshold for adult body lotion 370 ppb. But hand creme would be already 1.6 ppm

While these are conservative values they might not need to be show-stoppers the better we understand actual migration

Authorities like ECHA will likely question industry on unidentified chemicals and lean forward to a worst-case approach, due to possible presence of genotoxic chemicals.

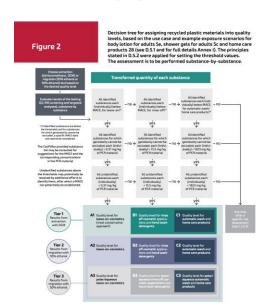
The CosPaTox Guideline – Summary of Key Findings

- 1 Groups of substances identified by GC/MS after extraction/migration testing of PE and PP recyclates
- Results of the elemental analysis of PE and PP recyclates after digestion
- 3 Model use cases for common packaging types and product categories
- 4 Example exposure scenarios based on model use cases

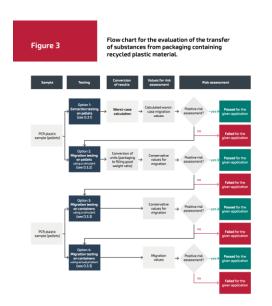
		Like	ly major or	igin
Substance group	Remarks	PE/PP packaging	Product residue	Foreig source
Aliphatic compounds / Alkanes		×		
Fatty acids/esters		×	×	
Flavors/Aromas/Fragrances			×	
Natural compounds			×	
Antioxidants	Antioxidants are used in plastics but also in filling goods (incl. some foods)	ж	×	ж
Salicylates	Possibly degradation products of fragrance compounds		×	
Benzoates	Possibly degradation products of fragrance compounds		×	
Phthalates		×		×
Fatty acid derivatives (non-ester)			×	
UV filters	Likely from sunscreens or UV resistant packaging	×	×	
Plasticizers(non-phthalate)		×		×
Agricultural chemicals			×	
Photoinitiators	May originate from UV curing printing inks; UV adhesives also a possibility	×		ж
Naphthalenes	Possibly degradation products of fragrance compounds		×	
Anitines	Possibly degradation products of azo dyes	×		×
Polyamide related substances	May originate from PA plastics in the input			×
Polycyclic aromatic hydrocarbons (PAH)	May originate from (certain) black pigments in plastics	×		ж
PET related and polyesters	Likely related to PET plastics in the input			×
Chlorinated substances	May originate from chlorinated polymers in the recycling input or high temperature cross-reaction with salt in the input		×	ж
Flame retardants				ж
Pharmaceuticals			×	
Styrene-related	Likely related to PS plastics in input			ж
Parabenes			×	
Acrylics		×		
Fluorinated substances				×
Food related substances			×	
Silicon compounds		?	7	?
Bisphenol-A (BPA)				×
Plastic additives		×		
Cosmetic products related substances			×	
Nitriles	Potentially related to nitrile rubbers in input			×
PEG/PPG related substances			×	
Disinfectants			×	
Nitro compounds		?	?	?
Pigments		×		

1	Table 3			ases compile x consortium		
	Use case	Packaging type	Packaging material	Product type	Amount of content [mL]*1	Packaging weight [g]
	1	tube	HDPE	shampoo	250	17.0
	2	closure	pp	shampoo	250	6.2
	5	bottle	HDPE	shampoo / shawer gel / body lotion	250	25.8
	7	pouch	PE	shampoo / shower gel	500	10.5
	10	sachet	PE	shampoo / shower gel / body lotion	2	1.1
	11	spray	HDPE	deodorant	100	13.0
	14	tube	HDPE	creme	75	6.5
	15	film	LDPE/PP	wet wipes	56 pieces	6.7
	21	tube	pp	shampoo / shower gel / body lotion	30	4.78
	22	bottle	PP	mascara	30	7.3
	28	bottle	pp	home care product	3000	130

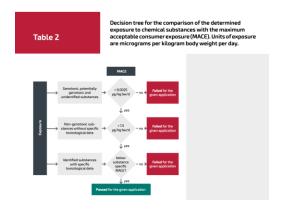
Tal	ble 4						sure sc xample			ulated	i	
Use case (Table 3)	Packaging format	Material	Product type	Packaging weight	User	Bodyweight	Pertion	Retention factor on skin	Absorption factor	Skin surface (adult) / cm²	Exposure from 1g of substance transferred per hig packaging material, [ug/hig bw per d]	Exposure from 1g of substance transferred per kg packaging material [µg/cm²]
1a 1b	tube	HDPE	shampoo	17.0 g	adult infant	60 kg 5 kg	10.46 ml	1%	50 % 100 %	1440	0.05927 1.423	0.7409
Za Zb	closure	рр	shampoo	6.2 g	adult infant	60 kg 5 kg	10.46 ml	196	50 % 100 %	1440	0.02162 0.5188	0.2702
5a 5b	bottle	HDPE	shampoo	17.0 g	adult infant	60 kg 5 kg	10.46 ml	1%	50 % 100 %	1440	0.08996 2.159	1.124
Sc Sd			shower gel	25.8 g	adult infant	60 kg 5 kg	18.67 ml	1%	50 % 100 %	17500	0.1606 3.8535	0.3303
Se Sf			body lation	25.8 g	adult infant	60 kg 5 kg	7.82 ml	100%	50 % 100 %	15670	6.7252 161.4	15.4504
7a 7b	pouch	PE	shampoo	10.5 g	adult infant	60 kg 5 kg	10.46 ml	1%	50 % 100 %	1440	0.01831	0.2288
7c 7d			shower gel	10.5 g	adult infant	60 kg 5 kg	18.67 ml		50 % 100 %	17500	0.03267	0.03361
10a 10b	sachet	PE	shampoo	1.1 g	adult infant	60 kg 5 kg	10.46 ml	1%	50 % 100 %	1440	0.4794	5.993
10c 10d			shower gel		adult infant	60 kg 5 kg	18.67 ml		50 % 100 %	17500	0.8557 20.54	0.8802
11	spay	HDPE	deodorant	13.0 g	adult	60 kg	0.69 ml	100%	50%	200	0.7475	67.28
14a 14b	tube	HDPE	hand creme	6.5 g	adult infant	60 kg 5 kg	2.16 ml	100%	50 % 100 %	860	1.560 37.44	10.88
15a 15b	wet	PE/PP	wetwipes	6.7 g	infant infant	2 kg 2 kg	16 pieces 5 pieces	100%	100%		957.1 299.1	
21a 21b	tube	PP	shampoo	4.78 g	adult infant	60 kg 5 kg	10.46 ml	1%	50 % 100 %	1940	0.1389	1.736
21c 21d			shower gel		adult infant	60 kg 5 kg	18.67 ml		50 % 100 %	17500	0.2470 5.950	0.2550
21e 21f			body lotion		adult infant	60 kg 5 kg	7.82 ml	100%	50 % 100 %	15670	10.38 249.2	11.93
22	bottle	pp	mascara	7.3 g	adult	60 kg	0.5 mt		50%		1.521	
28	bottle	рр	home care product	130 g	adult	60 kg	0.0018 ml	100%	100%	2085.5	0.0013	0.004



The CosPaTox Guideline – Key Recommendations are...


...to apply a combination of material 2...to categorize PE and PP characterization, safety assessment and quality management

Overview of the safety assessment and risk management process for recycled


recyclates into one of three quality levels which are based on model packaging use cases

...to evaluate substances that may transfer from plastic into product based on the flow chart provided in the guideline

4...to base decision making on a comparison of exposure with toxicologically derived thresholds

CosPaTox is now a DIN Standard- DIN SPEC 91521

• DIN SPEC is a recognized specification process developed by the **German Institute for Standardization (DIN)**. It establishes **rigorous quality, safety, and performance criteria**, ensuring that products and services comply with industry-leading standards. DIN SPEC certifications are particularly critical for industries handling sensitive materials, such as healthcare, technology, and manufacturing.

Through a DIN Standard the goal of making the CosPaTox approach a CEN Standard is one step closer!

CosPaTox has submitted its risk assessment approach to ECHA

ECHA final report to Commission by 21 September 2026

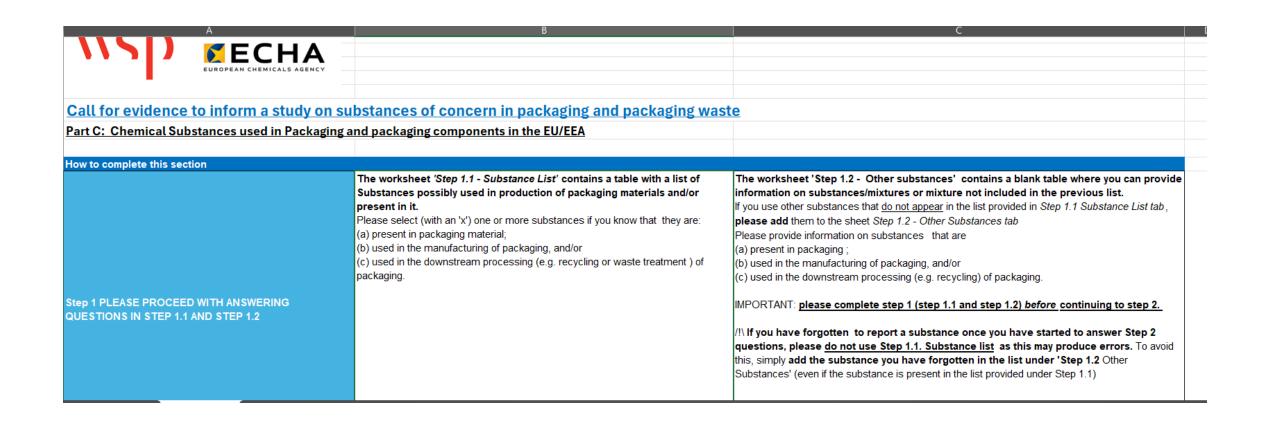
Call for Evidence for Substances in packaging and packaging waste

- ECHA launches a Call for Evidence to support the preparation of a study report under Packaging and Packaging Waste Regulation (PPWR).
- Information is sought on packaging, substances used in packaging and packaging waste, waste management and recycling technologies related to packaging.

Subject: Request to the European Chemicals Agency (ECHA) to prepare a study report identifying substances of concern in packaging and packaging components under the Packaging and Packaging Waste Regulation.

1. Background

The aim of the Packaging and Packaging Waste Regulation (PPWR) is to address the impact of packaging on human health and the environment and in broader terms to achieve a better sustainability of the packaging sector. This includes circularity of the material from manufacture to use and end-of-life, including waste management, which is impacted by the presence of substances of concern (SoC). These are defined in the PPWR as substances meeting the criteria laid down in Article 2(27) of the Regulation 2024/1781(1) establishing a framework for the setting of eco-design requirements for sustainable products (2).


Packaging should be designed and manufactured in a way that limits the presence of certain heavy metals and other SoC in its composition. Accordingly, SoC as constituents of packaging material or of any of the packaging components should be minimised.

Art.5(2) of PPWR states that "By 31 December 2026, the Commission, assisted by the European Chemicals Agency, shall prepare a report on the presence of substances of concern in packaging and packaging components, to determine the extent to which they negatively affect the re-use and recycling of materials or impact chemical safety".

2. THE MANDATE

The Commission is hereby requesting ECHA to prepare a study report identifying SoC

CosPaTox will be a powerful tool to ECHA

ECETOC Plastic Additives Task Force and the CosPaTox Approach

The ECETOC Plastic Additives Task Force was convened in September 2024 to respond to stakeholder concerns regarding exposure to chemical additives from plastic waste and recyclates.

While established risk assessment principles exist for certain sensitive uses, circular economy applications introduce additional complexities. Additives may degrade during processing or environmental exposure, creating new challenges for safety assessment.

This work aims to develop a practical framework that integrates existing tools and data to support risk-based decision-making across the plastic life cycle

The framework under development will:

- Distinguish between high-risk, low-risk, and uncertain scenarios.
- Support transparent decision-making by identifying data gaps and critical assumptions.
- Be applicable not only to additives but to other substances in plastic and solid polymer matrices.
- The aim is to create a scientifically sound, usable tool for regulatory and industrial stakeholders aligned with circular economy goals.

Thank you for your attention